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ABSTRACT 

This  r epor t  descr ibes  experimental  and theoret ical  work on the non- 

l inear  vibration of uniform beams for var ious support  conditions. The 

experimental  work is a n  account of a n  a t tempt  to extend the Moi rg  method 

to dynamic problems by use of high speed  photography. The theoret ical  

work i s  mainly the development of a numer ica l  procedure for investigating 

vibration of nonlinear beams for those c a s e s  where the space and  t ime 

var iables  a r e  not separable .  
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I .  INTRODUC T ION 

The purpose of this  program was to study, both theoretically and 

experimentally,  the behavior of continuous elast ic  sys t ems  such a s  beams  

and plates  when vibrating with amplitudes so l a rge  that the l inear  theory 

for  these sys t ems  i s  no longer applicable, but s t i l l  sufficiently smal l  to 

ensure  that the ma te r i a l  behaved elastically a t  all t imes .  

The differential  equations of motion of such sys t ems  can be  wri t ten 

without g rea t  difficulty. They a re ,  of course ,  nonlinear pa r t i a l  differential  

equations. 

meagre ,and  one i s  m o r e  o r  l e s s  thrown on his  own r e s o u r c e s  to  obtain a 

solution. 

admit  of an exact theoret ical  solution. 

The techniques f o r  solving such equations a r e ,  however, extremely 

It i s  no exaggeration to say that a lmost  none of these equations 

Two possible  approaches exist  fo r  

the solution of these  differential  equations. 

analytical  solution, and the second i s  a numer ica l  s tep by s tep procedure .  

The wr i t e r  has  p r e f e r r e d  the f i r s t  approach and has  been successful  in 

devising some s imple but approximate solutions which have already appeared 

in the literature1v2s3. However, he has  found i t  a lmost  impossible  to  improve  

on these  solutions and to extend these  methods to m o r e  complicated problems.  

He has  become convinced that  the only prac t ica l  p rocedure  a t  the p re sen t  

t ime  is  to u s e  high speed digital computers  together with suitable numer ica l  

p rocedures  . 

The f i r s t  i s  an approximate 
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, 

The basic  difficulty l ies  in the reduction of the sys tem to one descr ibed  

by an ordinary nonlinear differential  equation. 

cedure  is to  separa te  the var iables ,  but th i s  is generally impossible  to  do 

exactly except for  the ve ry  simplest  equations. 

p rocedures  a r e  employed, however, one essent ia l ly  supposes that  the motion 

of the sys tem can be descr ibed  by a n  infinite number of l inear  pa r t i a l  differen- 

t i a l  equations, each equation being valid fo r  a suitably chosen smal l  interval  

of t ime  A. 

be included h e r e  below again for completeness .  

The s implest  analytical  p r o -  

When numer ica l  integration 

This  procedure  has  been descr ibed  in a previous r epor t  but will  

The p resen t  investigators believe that a vas t  accumulation of theore t i -  

ca l  solutions i s  of l i t t le  value unless a ser ious  at tempt  i s  made  to  ver i fy  them 

by experimental  observation of rea l  sys t ems .  

confidence this  could engender,  i t  is believed that the feedback f rom 

experimental  work would help in  advancing the theoret ical  concepts.  

m a r y  emphas is  was  therefore  placed in the development of experimental  

techniques fo r  studying nonlinear vibrating sys tems,  and th i s  r epor t  is 

therefore  largely a descr ipt ion of these  a t tempts .  

Apar t  f rom the feeling of 

Pri- 

The p rogram was limited to  studying the vibration of beams  held so 

that  during motion no displacement of the ends i s  permi t ted .  

induces an  axial  tension in the beam and r e su l t s  in a nonlinearity of the 

governing differ entia1 equation. 

This  r e s t r a in t  
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11. THEORETICAL WORK 

The theoret ical  work was confined to developing a numerical  p rocedure  

fo r  solving nonlinear beam problems for  those c a s e s  where var iab les  a r e  not 

separable .  In par t icu lar  the concept of "normal modes" was extended to  such 

c a s e s .  

The wr i t e r  has  pointed out' that cer ta in  nonlinear continuous sys t ems ,  

charac te r ized  by the separabili ty of the space  and t ime var iab les ,  v ibra te  in 

no rma l  modes in the sense  defined by Rosenberg . In par t icu lar ,  the w r i t e r  4 

has  shown that a simply-supported beam rigidly held a t  i t s  ends is  capable 

of vibrating in normal  modes.  

The motion of beams  with axial  tension is  governed by the differential  

equation 

a2w t p- = o  a Z w  -N - a4, 
E1 - 

ax4 ax2 at2 

with 

in which N is the axial  force ,  w is the l a t e r a l  deflection, p the m a s s  density 

p e r  unit length, a the length of the beam, A i t s  c ros s - sec t iona l  a r e a ,  E is 

Young's modulus, I i s  the moment of iner t ia ,  and t i s  t ime.  

In the case  of a simply supported beam, a sine function in the space 

coordinate  effectively sepa ra t e s  the var iab les  in ( l ) ,  as i s  well  known, and 

n o r m a l  modes emerge  very  simply. 

separabi l i ty  is confined to the simply supported case .  

A s  f a r  a s  the wr i t e r  i s  aware ,  this  
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It i s  certainly very  surpr is ing that no rma l  modes  cannot b e  readily 

defined fo r  nonsimply supported beams .  

clusion that the concept b reaks  down completely when the boundary conditions 

a r e  changed. Consequently, it becomes necessa ry  to  genera l ize  this  concept 

so a s  to  take into account physical sys t ems  in which var iab les  a r e  not s-eparable. 

It is difficult to accept the con- 

While the possibil i ty of such theoret ical  extension exis ts ,  i t  i s  proposed 

to invest igate , f i rs t ,  by an approximate numerical  p rocedure  whether such 

noi-:iinI modes, conceived of intuitively, a r e  stable.  

A .  Time  Dependent Normal  Modes 

If one r eca l l s  the definition of no rma l  modes  in l inear  oscil lations,  

it is  evident that  they can  occur  only under cer ta in ,  quite res t r ic t ive ,  init ial  

conditions. 

s t a r t ed  exactly in the appropriate mode, which, in turn,  depends on i t s  

boundary conditions. 

not v ibra te  in a no rma l  mode. 

p rac t i ca l  value, the point made  here  is that  no rma l  modes  r equ i r e  r e s t r i c t ive  

conditions f o r  the i r  actual occurrence.  

Thus,  a beam will not v ibra te  in a no rma l  mode unless  i t  i s  

A beam which is given an a r b i t r a r y  s tar t ing shape will 

While the concept itself may be of considerable  

Returning now to the system governed by equations ( l ) ,  the simply 

supported c a s e  (where  the var iables  separa te )  

that  the mode shape itself i s  independent of t imesbeing always a sine function. 

In the c a s e  of other  boundary conditions, s ince var iab les  do not separa te ,  one 

m u s t  suppose that  the normal  modes a r e  a function of t ime,  the mode shape 

a l te r ing  continuously as the beam v ib ra t e s .  

i s  charac te r ized  by the fact  

However, i f  no rma l  modes exist ,  



they mus t  be s table;  that is ,  the beam mus t  r e tu rn  to a cer ta in  shape 

periodically.  

B .  

If i t  does not, then the normal  modes a r e  unstable.  

Num e r  ic  a1 P roc  edu r e  

In o r d e r  to 

no rma l  modes a r e  

basic  a s  sumptions 

investigate analytically whether such t ime dependent 

stable,  one must appeal  to physical  intuition fo r  ce r t a in  

We suppose f i r s t  that  the axial  tension N in (1)  does  not 

vary  very  rapidly so  that it may be a s sumed  to r ema in  constant fo r  

sufficiently sma l l  in te rva ls  of time. If N is constant in the f i r s t  of equations 

( l ) ,  it i s  l inear  and normal  modes exist ,  together with a denumerably infinite 

sequence of d i sc re t e  f requencies  for  any se t  of suitable boundary conditions. 

At the end of the t ime interval ,  one may u s e  the second of equations (1) to 

calculate  a new membrane  tension and a new se t  of normal  modes and na tura l  

f requencies .  

the normal  mode corresponding to the lowest frequency) of the f i r s t  t ime  

in te rva l  will  m e r g e  into the f i r s t  no rma l  of the second t ime interval  and so 

on f o r  a l l  subsequent t ime intervals  and other  no rma l  modes.  

fundamental  assumption of the investigation. 

Phys ica l  intuition suggests that the f i r s t  normal  mode ( tha t  is, 

This  i s  a 

Since normal  modes depend on the init ial  conditions, one mus t  specify 

such conditions consistently.  

with z e r o  init ial  velocity, the normal modes a r e  completely defined by the 

tension N.  

Assuming that the beam i s  initially displaced 

F o r  a constant N, one may a s s u m e  that 

w = X(x) exp( ipt) 

w h e r e  X i s  a function of x alone. 
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' 8  

* 

The initial condition i s  specified by the tension pa rame te r  

2 a 
Na - Aa f : k 2 1  ( x , )2dx  

p==-- -  
41 0 

( 3 )  

in which f::<, the amplitude of the displacement,  is unknown to  begin with, A 

is the c r o s s -  sectional a r e a  and p r ime  denotes differentiation with respec t  

to x. 

F o r  purposes  of computation, i t  is convenient to wr i t e  the relation 

(3) in the fo rm 

with 

a 
+ = a l  ( x t ) 2 d x  

0 

where  N:k is the "buckling load" of the beam t rea ted  a s  a column and h i s  

any convenient dimension of the beam c r o s s  section, such as  i t s  depth. 

If we l e t  

where  

2 = p % € L  4 2  
E1 

U 
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then i t  may be shown by elementary p rocedures  that fo r  beams clamped a t  

(x = 0,  a)  and fo r  beams  clamped a t  x = O  and simply supported a t  x =a, the 

no rma l  modes X(x) a r e  given by 

a x  F cash - - C O S  - a a i  a a 
a sin p - p sinh a 

X(x) = t 
c o s h a  - cos p 

a x  Px D sinh - - a sin - a x  F a x  Px p sinh - - a sin - cash - - C O S  - a a a a 
a sin p - p sinh a 

X(x) = t 
c o s h a  - cos p 

The frequency equations for  the two c a s e s  a r e ,  however, different.  

F o r  the clamped-clamped beam, the equation i s  

u ( 1  - cosh a cos  p) t p sinh a sin p = O  (8) 

and fo r  the clamped simply- supported beam, the frequency equation i s  

a sin p cosh a - p cos  p sinh a = 0 (9 1 

F o r  a given p, a ,  p a n d u  must  satisfy equations ( 6 )  and (8) o r  (9) .  

The values  of a ,  p and u may thus always be obtained by t r i a l  and e r r o r .  

With a and p known, the mode shape is completely defined by ( 7 ) .  

to  be  noted, however, t h e r e  a r e  an infinity of the se t  (a, p, u)  for  a given p. 

We a r e ,  fo r  the present ,  interested only in the se t  corresponding to  the 

lowest value of u .  

It is 

Consider  any t ime  interval extending f rom r A  to  ( r  t 1) A ,  w!7crebis  

a suitably sma l l  quantity. At time r A, the displacement and velocity a r e  given by 
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Knowing pr,  one may calculate a,, P,, p r  and X,. The displacement ,  

velocity and membrane  tension f o r  (r A )  < t < ( r  t 1) A a r e  then given by 

(13) 
W r; = X r ( f r  C O S  Pr t  t g r  s inp r t )  

(14) W v = - = Xrpr ( - f r  s i n p r t  t g r cos p r t )  
h 

However, the displacement,  velocity and membrane  fo rce  a t  t = 0 

a s  given by (13),  (14) ,  and (15) must  be the s a m e  a s  those given by ( l o ) ,  ( 1  1) 

and (12) and so 

F r o m  (18) ,  we get 

F r o m  (15) and (19) 

Substitution in (16) yields  
r 
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The relat ions (19) and (20 )  thus give f r  and g r  in t e r m s  of a l l  the known 

quantit ies and enable one to proceed to the next step.  It is important in 

this  computation that the t ime steps be taken as sma l l  as practica1,as otherwise 

the r e su l t s  will indicate an unstable motion even when i t  i s  essent ia l ly  stable.  

Although when the beam is  simply supported, an  exact solution in 

t e r m s  of elliptic functions can be obtained, i t  i s  of in te res t  to apply the 

numer ica l  method to this c a s e  also to  afford a comparison with the solutions 

fo r  other  boundary conditions. 

F igu re  1 shows a plot of the center  deflection ra t io  (w/h )  against  the 

velocity/frequency rat io  ( v / h ) / p ,  which may be called a modified phase plane. 

If the motion considered i s  stable and per iodic ,  a c losed curve  should r e su l t .  

The p a r a m e t e r s  chosen..in the computations were  those of the s tee l  

specimens to  be used in the experimental  work and a r e  as  follows: 

length = 30 in. depth = 0 .  25 in. width = 0. 30 in. 

The  resul t ing nondimensional p a r a m e t e r s  a r e  

A1 =(EI /a4p) ' / '  = 19.456 

2 A2 = (Ah /41) = 3 

The p a r a m e t e r  X was taken a s  2.  

In F igu re  1 i t  may be noted that a l l  the cu rves  a r e  essent ia l ly  closed, 

although not exactly so. Extended computations, with var ious values of the 

t ime  in te rva l  show, however, that the gap i s  a function of the t ime interval  

and d e c r e a s e s  a s  the interval  dec reases .  

( P A )  was  taken a s  .005,and thus over  1000 in te rva ls  w e r e  required to 

In the computations the quantity 
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complete 2 ~ r  radians.  

unwarranted,  especially as it has been established that any slight gap a t  

A fur ther  dec rease  in the t ime  interval  seemed 

c losu re  was an approximation e r r o r .  

We conclude therefore  that the motion i s  s table  and periodic for  

all boundary conditions, a n d  that it ismeaningful to speak of a t ime dependent 

no rma l  mode. 

C .  Pe r iod  of "Fundamental" Mode 

The  nonlinear per iod T s o f  vibration fo r  the "fundamental" mode may 

be wri t ten in the following fo rm 

( 2 1 )  

( 2 2 )  

) 
m = vA2 1 t vA2 3 

2 h2 

in which K i s  the complete elliptic integral  of the f i r s t  kind, p i s  the 

frequency, f o  is  the initial displacement and m i s  the p a r a m e t e r  of the 

Jacobian elliptic functions. 

f o r  the var ious  boundary conditions: 

The p a r a m e t e r s  a and v have the following values  

(a )  Simply supported 

u = y 1, =1 

(b)  Clamped-clamped 

a = 4.73 ,  v = . 3077 

( c )  Clamped- simply supported 

a 2 3.927, I, = 1. 6697 
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F o r m u l a s  (21) ,  ( 2 2 )  and (23) a r e  theoretically exact only fo r  the 

F o r  the o ther  two c a s e s  they a r e  approximate,  simply supported case .  

having been a r r i v e d  at  by applying a Galerkin approximation to the differential  

equation 3 . 

Table 1 gives a comparison of the fundamental per iod a s  a r r ived  a t  

by formula  (21) and by the numerical  p rocedure  outlined above. 

It will be  noted that the agreement  i s  c lose  fo r  the simply supported c a s e  

only. F o r  the other  boundary conditions, formula ( 2 1 )  underes t imates  the 

per iod a s  might be expected. 



TABLE 1 

FUNDAMENTAL PERIOD T::: (INSECS) 

ss cc 

F o r m u l a  (21) .02088 .00860 

Num. P r o c .  .02080 . 00934  

SS = Simply supported 

CC = clamped-clamped 

13 

cs 

.00878 

. 0 1348 

CS = clamped-  s imply supported 
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111. AIMS O F  EXPERIMENTAL WORK 

The experimental  work had two main  objectives in  view. Theoret ical  

1 work  has  indicated the existence of no rma l  modes of vibrat ion in nonlinear 

continuous sys t ems ,  s imi l a r  in many r e spec t s  t o  that observed in  l inear  

sys t ems .  In par t icu lar ,  f o r  simply supported b e a m s  such modes  can be 

descr ibed  with relat ive simplicity;  but for  other  conditions of support ,  the  

nonlinear no rma l  modes  a r e  difficult to  desc r ibe  analytically.  

experimental  technique was required which could enable the observation of 

the shape a s sumed  by a vibrating beam o r  plate  continuously. A technique 

with considerable  appeal because of i t s  inherent simplicity was the so- 

cal led Moir6 method5s6, 

study p la tes  under s ta t ic  loads .  

photography this  method should provide a s imple way of observing the 

behavior of vibrating b e a m s  and plates .  

A genera l  

which has  been applied with some  success  to 

It was  fel t  that  combined with high speed 

A second objective of the experimental  work  was  considerably 

s imple r ;  namely,  to s ee  whether the theoretically predicted nonlinear 

f requency of vibration could b e  verified experimentally.  

to  a f i r s t  approximation, descr ibe  a motion which can be represented  by 

ell iptic s ines  and c ~ s i n e s l , ~ ,  3 .  

f requency of vibration is  a function of the initial displacement .  

All  these  sys t ems ,  

However, unlike l i nea r  sys t ems ,  the 

F o r  this  second objective the Moirg method could be used  but i s  not 

necessa ry ,  a t  any r a t e  fo r  beams.  However, high speed photography was  

essent ia l  because of the difficulty of supplying a n  ell iptic- s ine type 



1 5  

excitation to the sys t em;  and therefore  the f r e e  vibrations tended to  be  

damped out rapidly. 

( theoret ical)  normal  mode and to photograph the vibrating beam edgewise 

and then analyze the motion. 

The technique w a s  to  s t a r t  the s t ruc tu re  in a 

Both these methods were t r i ed  and a r e  descr ibed in the following 

sections.  

they constitute the s implest  continuous sys tem.  

All the experiments  thus far c a r r i e d  out were  on beams ,  s ince 
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I V .  MOIRE METHOD 

The method of Moire/ fringes has  become useful,  as previously 

noted, as an experimental  tool in the analysis  of s t ruc tu ra l  components 

under  s ta t ic  loads.  However, this method has  apparently been untr ied 

fo r  the analysis  of dynamic problems.  

A photograph showing the general  a r r angemen t  f o r  the t e s t s  i s  

shown in F igure  2 .  

The beam is positioned in a base  plate  ( F i g u r e  3) fabr icated f rom a 

This  plate,  3-1/2- inch thick s tee l  plate  with a 15-inch by 30-inch window. 

isolated f r o m  the floor and adjacent s t ruc tu res  with one -inch neoprene padding 

to reduce random vibrations in the t e s t  specimen,  is anchored to a 

concrete  floor with two 1-3/4-inch bolts.  Steel  plates ,  one inch thick, a r e  

used  to c lamp the t e s t  specimen. 

The gr id  (F igu re  4) was made  f rom a durable  type cardboard lined 

with a l te rna te  black and white lines 0 .  1 inch in width. 

The cardboard  i s  mounted in a housing constructed on one-inch 

aluminum plate ( F i g u r e s  2 and 4) .  

f o r  placement of the gr id  paral le l  to the undeflected specimen but a l so  afford 

placement  in c i r c l e s  with radi i  of 2 -1 /2  and 3-1 /2  t imes  the length of the 

m o s t  dis tant  pa r t  of the gr id  to the model sur face .  Such an a r rangement  

p e r m i t s  experimentation with various pa t te rns  so a s  to optimize c la r i ty  

and accuracy.  

Channels in th i s  housing allow not only 
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The c a m e r a  ( F i g u r e  2)  is  mounted behind the cen te r  of the gr id  and 

views the specimen and the reflected gr id  f rom the m o s t  dis tant  p a r t  of the 

gr id .  Lighting is  achieved by appropriate  placement  of flood l a m p s  around 

the edge of the b a s e  plate .  

The s ta t ic  experiments  conducted f o r  cal ibrat ion purposes  consis ted 

of applying a known load to  the end of a cant i lever  and comparing the actual  

deflection with that computed from the Moire' pa t te rns .  

r e su l t s  var ied  with the curvature  of the gr id  used.  

"1") shows the reflected gr id  when the specimen i s  undeflected. F i g u r e  6 

(with the label  "4") shows the fringe pa t te rn  with gr id  plane f la t  and the  

specimen loaded, and F igu re  7 (with the labe l  "5") shows the f r inge  pa t te rn  

with the gr id  plane having a radius  of cu rva tu re  of 3. 5d, where d is the 

dis tance of the gr id  f rom the model. The  f la t  g r id  gave relatively poor 

r e s u l t s ;  whereas ,  the curved grid gave an excellent predict ion of the 

maximum deflection (. 498 inch as  against  a measu red  deflection of 0 .  5 inch). 

The  accu racy  of the 

F igu re  5 (with the label  

It should be noted that f o r  the s ta t ic  t e s t s ,  a cant i lever  specimen 

was  used  ( F i g u r e s  2 and 4); but, fo r  the dynamic experiments ,  the t e s t  

f ix ture  was  modified to  accommodate simply supported and clamped beams .  

Two beams  of different configurations w e r e  designed- -one f o r  both 

ends  clamped,  the other  f o r  both ends pinned (F igu re  8). 

approximately 30 inches long, with a 0.250 inch or 0 .  300 inch c r o s s  section, 

f ab r i ca t ed  f r o m  high s t rength steel plate,. and having a . 25-inch ref lect ive 

su r face  machined to a No.  2 finish. 

Each beam is 



FYGCRE 5, CANTILEVER IN U N D E F L E C T E D  POSITION 



FIGURE 6 ,  CANTILEVER D E F L E C T E D  O N E - H A L F  INCH A T  
TIP, MOIRE PATTERNS WITH GRID FLAT 
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F I G U R E  7, C A N T I L E V E R  D E F L E C T E D  O N E - H A L F  INCH AT 

CURVATURE 3 ,  5d (140 Inches) 
T I I P , M O I R ~  PATTERNS WITH GRID RADIUS OF 
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FIGURE 8. SKETCH OF BEAMS USED IN EXPERIMENTS 
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An extended effort was made to develop this  technique into a prac t ica l  

experimental  p rocedure  fo r  determining frequencies  and mode shapes of 

nonlinear continuous vibrating systems.  

method, severa l  difficulties were encountered. Some of these  w e r e  over -  

come, but o thers  required extensive modification of equipment o r  additional 

purchases  which proved prohibitive due to allotted t ime  and funds. 

While experimenting with th i s  

A Fas tex ,  16 mi l l imeter ,  high speed motion camera ,  capable of 

taking 8000 p ic tures  p e r  second, was  used  together with Wollensak "Goose" 

Control Unit. 

synchronizing, in proper  t ime relationships,  the Fas t ex  c a m e r a  operat ion 

and the event being photographed. 

increasing the voltage over  that normally applied to the c a m e r a  s o  that 

increased  c a m e r a  speeds may be obtained. 

The "Goose11 control unit provides  a convenient means  fo r  

It a l so  provides  a means  fo r  safely 

T e s t s  revealed that the complexity of high speed photography in 

conjunction with the Moir6 method made  this  a ve ry  difficult experiment .  

Resolution of the pa t te rns  recorded on some of the fi lm, though visible,  

was  very  poor .  This can be attr ibuted to seve ra l  f ac to r s .  

High speed photography requi res  optimum illumination of subjects  

being photographed. 

only reflected light could be used in these  experiments .  

speed was used to r eco rd  the action of the vibrating beam, the result ing 

motion fi lm was da rk  with no pattern definition on the image of the model .  

A dec reased  c a m e r a  speed revealed faint  indication of the f r inges ,  but the 

speed of motion of the fr inges was excessive.  

Because of the technique employed by the Moir6 method, 

When p rope r  c a m e r a  
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Normally,  high speed film m u s t  be used  when photographing motion at 

speeds found in a vibrating beam. 

grainy texture .  

l ines ,  especially on as small an a r e a  as  that  afforded by the . 250-inch 

wide beam. 

Such f i lms  have a charac te r i s t ica l ly  

This  tends to  dis tor t  the resolut ion of the ref lected gr id  

Since the method of obtaining Moirg f r inges  necess i ta tes  rewinding 

of the f i lm so  that a double exposure of the beam (one before  and one a f t e r  

it i s  s e t  in motion) can  be made ,  a slight change in the position of the film on 

i t s  spool resul ted in a relat ive displacement of the images  of the beam in 

the two exposures .  

double image  of the  beam could be eliminated by substituting a wider sur face  

m i r r o r  in place of the beam on the init ial  exposure,  thereby simulating 

the gr id  l ines  on the beam in i t s  neut ra l  position. The second exposure 

was  then made  of the statically deflected beam so  that only one p ic ture  of 

the  beam itself was taken. 

Subsequent t e s t s  with a s t i l l  c a m e r a  revealed that the 

When applying th i s  technique to  the dynamic situation, however, the 

c a m e r a  failed to  yield a f i lm with resolution of the pa t te rns  such that a 

quantitative analysis  could be made. 

difficult ies a l ready mentioned, u se  of two different reflective su r faces  

r e q u i r e s  both to  have the s a m e  reflective qual i t ies .  Otherwise,  one 

overshadows the other  and definition of the f r inges  is los t .  

the  two images  on the s a m e  film by different lens  set t ings w e r e  unsuccessful .  

Indications a r e  that in addition to  the  

Effor ts  t o  blend 
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In selecting the ma te r i a l  f rom which the model  beam was to be  

fashioned, consideration had t o  be given to  obtaining one which had o r  could 

be  polished to a m i r r o r - l i k e  finish. 

be  fabr ica ted  into a par t icu lar  shape and fur ther  mus t  p o s s e s s  sufficient 

yield s t rength so  that i ts  e las t ic  behavior for l a rge  amplitudes was insured.  

High s t rength s tee l  with a yield point of 80, 000 ps i  was selected with one 

s ide lapped and polished to  a No. 2 finish. 

p re l iminary  s ta t ic  t e s t s  were  performed to  check out apparatus .  

the dynamic t e s t s  revealed that a m o r e  reflective sur face  on the beam would 

be necessa ry  for  sufficient definition of the fr inges.  

At the s a m e  t ime,  the ma te r i a l  had to  

This proved sat isfactory when 

However, 

In br ief ,  the attempt to  use  the Moir& fr inge method for  vibrating 

beam problems has  turned out thus far to be unsuccessful .  

mean  that the difficulties a r e  insuperable.  

successful  application of the method s e e m s  to  be  the availability of high 

speed film with a ve ry  fine grain.  

b e  m o r e  successfully applied to plates  than to  beams  in which the nar row-  

n e s s  of the reflecting surface inevitably r ende r s  the delineation of the fr inge 

pa t te rns  very  difficult. 

f ine grained fi lm. 

This  does not 

A necessa ry  condition for  

It appears  a l so  that the technique would 

However, th i s  could possibly be overcome with a 
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V .  NATURAL FREQUENCIES O F  NONLINEAR BEAMS 

The Moir; method is not necessa ry  when one is  in te res ted  only in  

the vibration of beams.  

tion by photographing the vibrating prof i le  of the beam.  

One could theoret ical ly  obtain much useful in forma-  

To achieve this, the position of the c a m e r a  was changed such that the 

beam could be photographed from above to r eco rd  the actual  deflections 

during vibrat ion (F igu re  9 ) .  

indicating per t inent  points along i ts  length to be  measu red  f o r  deflection 

during the vibration cycles .  

painted white to accentuate the contrast  with the image  of the beam on the 

f i lm .  

light to photograph the beam during motion using a c a m e r a  setting of 5000 

f rames p e r  second. The F a s t e x  1 6 - ~ ~  c a m e r a  loaded with Kodak T r i - X  

high speed r e v e r s a l  f i lm was again used  to conduct these exper iments .  

The beam was  painted black with white l ines  

Surrounding f ix tures  and background w e r e  

F ive  photo flood l amps  were focused on the beam to  supply n e c e s s a r y  

Posit ioning of the beam in the  des i r ed  mode shape was  achieved by 

wedging a lightweight aluminum load plate  with 7 adjustable sc rews ,  placed 

to cor respond with the white lined points on the  beam, between a backup 

assembly  and the beam (F igure  10). The backup assembly ,  which could be 

adjusted horizontally to  deflect the model  the p rope r  dis tance,  consis ted of 

a 1 / 4 1 1 x 2 1 t x 2 ' r x  30 inch long angle and a 2 - 1 / 2 1 1 x 1 - 1 / ' 2 1 1  X 20 i nch longspace r  

p la te  ( F i g u r e  11). The screws ,  mounted in the load plate  and with round 

heads  to reduce friction, w e r e  adjusted so that the i r  ends fo rmed  seven 

points of the prede termined  mode shape of the  beam. 
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F I S U R E  9 .  C O M P L E T E  ASSEMBLY O F  A P P A R A T U S  USED IN 
E X P E R I M E N T A L  W O R K  TO DETERMINE NONLINEAR P E R I O D  



F I G U R E  10. C L A M P E D - C L A M P E D  B E A M  INITIALLY DISPLACED 
A N D  R E A D Y  FOR R E L E A S E  - 

30 
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ASSEMBLY 
UORIZONTALLY 
A DJ U 5 T A B  LE 

'\hod u STABLE \, 
SCREWS 
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I 

FIGURE 11. SKETCH O F  SPRING LOADED PLUNGER ASSEMBLY COCKED 
AND READY TO STRIKE LOAD P L A T E  
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The model  was set  in vibratory motion by sudden withdrawal of the 

This  was achieved by a spring-loaded plunger (F igu re  l l ) ,  which load plate .  

when r e l eased  would s t r ike  the  edge of the load plate  n e a r e s t  the backcp 

assembly ,  thereby knocking it away and allowing the model  to v ibra te  f ree ly .  

C a m e r a  s t a r t  and plunger re lease  w e r e  synchronized to allow acce lera t ion  

of the fi lm f r o m  0 to  5000 f r a m e s  p e r  second. 

The  p rocessed  f i lm was  analyzed using a Tra id  Motion Analyzer ,  

which permi t ted  f r a m e  by f r a m e  inspection. 

var ious  t i m e  in te rva ls  in  the f i r s t  2 o r  3 cycles  was m e a s u r e d  a t  each of the 

Deflection of the beam a t  

seven points along the beam using a b a s e  l ine which s imulated one edge of 

the beam in i t s  neutral  position. The  per iod of the cycle  was  de te rmined  by 

multiplying the number of f r ames  involved in one complete  cycle  by the  

t ime  in te rva l  between f r a m e s .  These data  w e r e  then reduced and compared  

with the theoret ical  formulae.  

The inherent difficulties of th i s  method of sett ing the beam in v ibra-  

tion a r e  obvious. 

theoret ical  fundamental  mode shape. 

The first difficulty lay in closely approximating the 

While this  is  a s imple half sine wave 

in the  c a s e  of the simply supported beam,  i t  a s s u m e s  quite a complex 

mathemat ica l  f o r m  in the clamped c a s e  being dependent on the membrane  

tension. Adjusting the beam shape to conform to  the theore t ica l  f o r m  a t  

seven points is  s t i l l  a c rude  approximation only,and inclusion in i t  of higher 

modes  is unavoidable. This,  of course ,  could great ly  influence both the 
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period of vibration and the mode of the vibration. Secondly, this method 

i s  r e s t r i c t ed  by the rapid decrease  in the amplitude of the motion, so that  

one i s  l imited to studying the f i r s t  two o r  t h ree  cycles  of the motion in o r d e r  

to obtain information on l a rge  amplitude vibrat ions.  

Altogether,  eleven ( 11) tes t s  were  conducted f o r  the simply supported 

and fo r  the clamped-clamped case .  Only the amplitude of the init ial  d i s -  

placement was var ied in the different c a s e s .  Two types of information w e r e  

sought, namely, the mode shape and the per iod of vibration. An essent ia l  

assumption, of course ,  i s  that !if the init ial  s tar t ing shape i s  not a t r u e  

mode, the subsequent vibration will not p e r s i s t  in that mode fo r  simply 

supported beams  o r  r e tu rn  to that mode fo r  clamped beams.  Obviously, 

in the c a s e  of clamped beams,  the agreement  with theory cannot be  expected 

to be par t icu lar ly  good because of the change of amplitude f r o m  cycle to cycle.  

It has  not been possible  to reproduce information pertaining to  all of 

the t e s t s .  The r e su l t s  of a few of the t e s t s  a r e  presentee in F i g u r e s  1 2  to 18 

together with a comparison with theoret ical  data .  

F i g u r e s  12 and 13 show the motion of the center-point of the beam 

fo r  the clamped-clamped c a s e  and the simply supported case .  It will be noted 

that in both c a s e s  the experimental  beam had a s m a l l e r  frequency of motion. 

The damping out of the motion is observable  in the reduction of the amplitude 

of the displacement .  

F igu res  14 to 16 show the mode shapes assumed by the beam a t  the 

t i m e s  noted. The mode shapes a r e  '!normalized'', that  i s ,  a l l  ordinates  a r e  

divided by the maximum ordinate of that cu rve .  
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Time  - Mill iseconds 

FIGURE 12. MOTION OF MIDSECTION-CLAMPED BEAM 
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FIGURE 17. PLOT OF PERIOD RATIO AGAINST DISPLACEMENT 
RATIO-CLAMPED BEAM 
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Final ly ,  F i g u r e s  17 and 18 show a plot of the ra t io  

Nonlinear Pe r iod  f o  Maximum Displacement :$ 

- -  - against  the amplitude ratio- = 
T L inea r  Pe r iod  h Depth of Beam 

It is seen that while the t rend  of the curve  is  reasonably well  duplicated, 

especial ly  in  the simply supported case ,  the  ag reemen t  between theory and 

experiment  i s  not sat isfactory.  
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VI. CONCLUSIONS 

The experimental  p rogram has  involved all kinds of difficulties that  

w e r e  not foreseen,leading to  ra ther  unsat isfactory r e su l t s .  Despite this ,  

the present  investigator i s  confident that  all the p rob lems  encountered in 

experimental  technique can be overcome by suitable modifications.  

It appea r s  essent ia l  f o r  the fu r the r  development of the Moire/ method 

that one should be equipped with a f a s t  as well as  fine grained film. 

the method can be applied with sufficient accuracy  only to s t ruc tu res  with 

fa i r ly  l a r g e  reflective su r faces  such as plates .  

Generally,  

The  load application method needs to be modified and improved.  It 

is obvious that a sinusoidal excitation will be of l i t t le  value in locating the 

na tura l  f requencies  because  of the possibil i ty of subharmonic resonance,  

among o ther  reasons .  Possibly,  an ell iptic s ine type excitation, if one can  

be designed and applied, may lead to fruitful  r e su l t s .  

The  p rogram m a k e s  it abundantly c l ea r  that  a n  exper imenta l  investi-  

gation of nonlinear vibration charac te r i s t ics  is bese t  with many difficulties 

and s e v e r a l  methods requi re  patient and possibly prolonged investigation. 

The theoret ical  s tudies  established the stabil i ty of "t ime dependent 

no rma l  modes" for sys t ems  where space and t ime var iables  a r e  not separable .  

It is believed that future p rogres s  i n  this a r e a  m u s t  lie in  the development 

and  ref inement  of numerical  integration procedures  for such s y s t e m s  
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